
Johannes Scharf

rOWLer – A Hybrid Rule Engine for Legal
Reasoning

In this paper rOWLer, a hybrid rule engine for legal reasoning is presented.
The engine combines the expressiveness of rules and ontologies to enable legal
reasoning — hence the name «rOWLer». It is tailored for use in public admi-
nistration (tax law, pension law, social benefits law, etc.) and provides a flexible
architecture, in particular concerning amendments, which allows for adaption
to different requirements.

Collection: Conference Proceedings IRIS 2015
Category: Articles
Field of law: Advanced Legal Informatics Systems and Applications
Region: Austria

Citation: Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT
26. Februar 2015 – IRIS

ISSN 1664-848X, http://jusletter-it.weblaw.ch, Weblaw AG, info@weblaw.ch, T +41 31 380 57 77



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

Contents

1 Introduction
1.1 Motivation

2 Architecture
3 Reasoning module and algorithm
4 Temporal model and reasoning

4.1 Theoretical background
4.2 Versioning model

4.2.1 Temporal dimensions
4.2.2 Versioning legal rules
4.2.3 Retroactive modifications

4.3 Selecting applicable rules
5 Modelling norms

5.1 Presenting rule priorities
6 Related work
7 Conclusions and future work
8 References

1 Introduction1

[Rz 1] The development of rOWLer is part of the PhD thesis of the author2 and draws on ex-
periences gained by modelling legal norms with Java and OWL 2. This research tries to fill the
gap between the syntactical representation of norms (in XML or other formats) and the need of
public administration for a powerful, yet easy to use and customizable legal rule engine. The ar-
chitecture of rOWLer is aligned with the semantic web stack and is compatible with LegalRuleML
[Athan et al. 2013], an upcoming standard for modelling legal rules. Present software solutions
could be improved, following the theoretical models available.

1.1 Motivation

[Rz 2] The use of logic-based knowledge systems3 in public administration (e.g. in tax law) dates
back to the 1970s in Austria, but there is still no standard or unified methodology for implemen-
tation available. Formalization of statutes in practice happens mainly in an ad hoc fashion by the
software expert often without considering legal theory at all.

[Rz 3] Although the current models of law are rather useful and accepted in practice they have
several severe drawbacks. For instance they violate the isomorphism principle in a dynamic legal
environment which makes maintenance a daunting task. Moreover the legal dynamics (change
of law over time) caused e.g. by amendments cannot be handled appropriately. Usually a kind
of monotonic reasoning is used which «simulates» defeasible reasoning to some extent. However
this approach is very limited in use and can only capture a few aspects of legal reasoning.

[Rz 4] The author’s PhD thesis tackles these challenges and claims that legal theory and approa-
ches from AI and Law can improve computable models of law used in practice today. In the long

1 This is a slightly revised version of the paper presented at JURIX2014-DC at the Jagiellonian University, Kraków.
2 Johannes Scharf works as a software engineer at the federal computing center (Bundesrechenzentrum) in Vienna and

as a PhD researcher at the University of Vienna.
3 These systems are mostly «production systems» formalizing law by using thousands of if-then-else statements.

2



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

run a flexible framework for building legal expert systems is needed which builds on open stan-
dards and implements best practices to foster reuse. Such a framework would also need to be
complemented by a unified methodology for formalizing legal norms.

[Rz 5] The contribution of this research towards a common framework is the development of
a solid temporal model which is capable of handling legal change in an efficient manner, e.g.
determining applicable rules according to the temporal relations of the case. This supports the
development of clean and well-structured models of law and thus decreases maintenance costs.
The technical architecture of rOWLer follows a modular approach adhering to best practices4

from software engineering and can be perceived as an extensible framework for building legal
expert systems. This complements efforts to acquire an acknowledged standard for the rule layer
of the semantic web cake.

2 Architecture

[Rz 6] The architecture of rOWLer consists of three main layers complemented by an electronic
document repository, namely the process layer, the rule layer and the ontological layer. What
follows is a short overview of the architectural layers of rOWLer, each providing a different view
on law and legal rules.

• Process Layer: The process layer formalizes the legal procedure and is responsible to handle
the dialogue between the applicant and the public agency. It collects the relevant facts by
automatic and manual means and interacts with the rule layer to continuously provide pre-
liminary results until the final decision. The authorizing person is asked by the system for
decision if a «hard» rule should be applied.

• Rule Layer: This layer contains the formal rules and the inference engine. It drives legal rea-
soning by retrieving necessary information like facts from the ontology and providing results
to the process layer above.

• Ontological Layer: The ontological layer supports the layers above by shallow reasoning on
the knowledge base staying within OWL 2, preparing it for more complex reasoning using
rules. Especially by data completion, reasoning on material circumstances (claims, facts and
proofs) and legal concepts by deriving inferences.

• Electronic Document Repository: This layer complements the formal model by providing ac-
cess to electronic documents in Akoma Ntoso [Palmirani & Vitali 2011]. Entities of the other
layers, this are rules, concepts, etc., can be linked by using IRIs with legal text. This allows
for supporting the decision making by the legal expert by providing statutes, commentaries
and judgments as well. Moreover it fosters isomorphism of rules by linking them with their
legal basis.

3 Reasoning module and algorithm

[Rz 7] Technically the algorithm is encapsulated in a module which integrates the reasoner with
the rest of the system and also wraps the temporal model. This thin integration layer is also

4 This ensures more clean and maintainable code which is at the same time easier to understand and read.

3



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

responsible for deriving the parameters from the facts necessary to call the engine, e.g. the si-
gnificant date. Often it is required to reason over complex situations which span a longer time
period5. Such scenarios are handled by the reasoning module which interacts with the reasoner
to achieve the overall conclusion.

[Rz 8] In the following section the proposed algorithm for reasoning is presented, it has to be
mentioned that only a rather sketchy overview is given but no complete logical formalization is
provided due to space restrictions.

[Rz 9] Basically the algorithm is divided into two separate steps to handle temporal and legal
reasoning: (1) Determine which rules are applicable to a case at a certain point in time and (2)
apply the rules determined in the first step to the case using defeasible reasoning.

[Rz 10] The distinction between temporal reasoning and legal reasoning allows for a separate
treatment of both problems. In technical terms each of the steps is encapsulated using an interface
with an independent implementation. This approach reduces the complexity of the algorithm by
separating the whole problem into smaller pieces, independently of each other, while at the same
time fostering better integration, maintenance and testing.

4 Temporal model and reasoning

4.1 Theoretical background

[Rz 11] There are several possibilities the legislator can adopt to reduce effort and cost of legal
change management [Palmirani 2011]. Regardless of the methodology followed by the legislator
a computable model of law has to deal with changes of sources of law somehow.

[Rz 12] For the purposes of the current model we follow the «direct method» of [Palmirani 2011]
and assume that each change of the sources of law (e.g. by an amendment) leads to a new conso-
lidated version of a statute, containing untouched, modified and new provisions as well. The old
version of the statute and its norms enter out of force before the day the new versions enter into
force. This approach reduces the complexity of the temporal model.

[Rz 13] From a theoretical perspective this may not fully convince as only some provisions are
affected by change and thus enter out of force by implicit derogation. However if the legislator
enacted an authentic consolidated version of law no such objections exist, even from a theoretical
point of view.

[Rz 14] To handle change of law two aspects need to be considered: (1) A solid naming convention
for statutes and rules and (2) a versioning model which formalizes the temporal dimensions of
law.

[Rz 15] Due to limited space only the second aspect will be discussed in the next section. It
should just be mentioned, that the used naming convention is aligned with FRBR [Saur 2009]
and a simplified version of the HTTP-based syntax for IRIs of Akoma Ntoso [Francesconi 2011;
Palmirani & Vitali 2011] compliant with CEN MetaLex [Boer & van Engers 2011].

5 For example due to the ruling of the Austrian Supreme Court of Justice regarding continuing obligations the time
before an amendment has to be judged according to the old rules and afterwards according to the new ones.

4



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

4.2 Versioning model

4.2.1 Temporal dimensions

[Rz 16] According to legal theory the temporal model distinguishes the following temporal di-
mensions of legal norms (cf. [Palmirani et al. 2010; Palmirani et al. 2011])6:

• Existence: The period in which the norm is part of the legal system, starting with the day of
publication (in an official journal), ended by a subsequent normative action.

• Force: When the norm is in force and thus can be applied by the judge in general. In Austria
this period usually starts after the day of publication but can be deferred by vacation legis.

• Efficacy: The period in which facts must have occurred in order for the rule to be applicable
is called the efficacy period.

• Applicability7: This is the period when a legal norm produces the consequences it establishes.

[Rz 17] Usually the periods of force coincides with efficacy and applicability of a norm. However
it is possible that the effects of a norm start before its force (retroactivity) or continue after the
repeal (ultra-activity). For example the tax law of 2008 should be applied to the income earned
in 2008 (efficacy), even if a case should be decided after the 31st of December (applicability)8.

4.2.2 Versioning legal rules

[Rz 18] The versioning model used in rOWLer is based on [Palmirani & Brighi 2006] but has
been slightly modified and extended to handle not only statutes (documents) but legal rules as
well and also to be capable of determining the norms which are applicable to a case at a certain
point in time.

[Rz 19] The versions of a statute are ordered linearly in so called «versioning chains» by their date
of enter into force. When a new version of law is enacted it is added at the end of the chain right
after the last version. The model commits itself implicitly that the periods of force of two distinct
provisions never overlap. This ensures the soundness of the linear ordering and the versioning
chains.

[Rz 20] It is assumed that the time when the changes are applied to the legal text coincides with
the time of enter into force of the amended provision. Moreover the publication date of the amen-
ded provision is assumed to be the same as the amending provision and is also used as the official
version date of the act.

4.2.3 Retroactive modifications

[Rz 21] Following [Palmirani & Brighi 2006] to handle retroactive modifications the timeline has
to be split virtually in the past creating a new legal situation which has not existed originally in
this instant in time. To avoid major change of the temporal model in case of retroactive modifica-

6 It has to be noted, that the terms are not always used homogeneously in literature and are used with different mea-
nings. The terms «efficacy» and «applicability» refer to «Bedingungsbereich» and «Rechtsfolgenbereich» respectively
in German legal theory [Walter et al. 2007].

7 This refers strictly to temporal applicability, the derogation of norms, e.g. by EU law, is tackled in the second reaso-
ning step of the proposed algorithm.

8 For the example we assume that the fiscal year coincides with the calendar year.

5



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

tions, the proposed solution is enhanced and adopted to avoid splitting of versioning chains.

[Rz 22] Each versioning chain is identified by the publication date of the retroactive modification,
which is the date from that the chain is valid and hence points at the «current» legal situation.
When a retroactive modification arrives, the current chain gets duplicated and the new chain
contains the modified provisions starting after the retroactive change is applied.

Figure 1: Example of retroactive modification (adapted from Palmirani and Brighi [2006])

[Rz 23] Figure 1 shows an example of an amendment published on 5 January 2014 which re-
troactively modifies v2 at time t1 and thus leads to a new versioning chain which contains the
untouched v1 followed by the amended versions. Virtually the timeline gets split after v1 which
is not affected by the modification, as indicated by the dashed line. There is no need to touch the
existing chains. The retroactive change of v2 subsequently leads to an adaption of the following
versions as well, thus we get the situation described above.

[Rz 24] The versioning chains enable the reasoning engine to query the legal situation before
and on (or after) the 1st of May 2014 when the retroactive amendment has been published and
became part of the legal system. Further it is possible to refer to the «current» legal situation by
assigning a variable to the last chain. When the current chain needs to be put out of service due a
retroactive modification the variable «current» simply refers to the new chain, without affecting
the rest of the model. Unlike [Palmirani & Brighi 2006] there is no need to split existing chains
in case of retroactive modifications.

4.3 Selecting applicable rules

[Rz 25] Based on the versioning model and the reflections made in the previous sections a tem-
poral reasoning engine has been designed which is able to compute the legal rules applicable to
a case in a given time. In this step the algorithm deals with the «external» time of norms, which
guide the lifecycle of the provision and not the «internal» time which is expressed in the rule
itself, e.g. when it is obligatory to use winter tires.

[Rz 26] To figure out which rules are applicable to a case the engine needs to take the periods of
efficacy and applicability into consideration. Accordingly the temporal model needs to be queried
with two dates: (1) The view point of the legal system and (2) the «significant» date of the case
used to determine the applicable rules. The latter usually depends on the content and type of law
(procedural or substantive law). For instance in criminal law the date when the crime has been
committed is significant and hence determines which version of law is applicable to a case.

[Rz 27] The algorithm adopted by the temporal reasoning engine adheres to non-monotonic re-
asoning and roughly applies five steps to determine applicable rules: (1) Get existing norms at

6



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

view date, (2) calculate temporal dimensions of norms, (3) determine applicable norms accor-
ding to temporal facts of case, (4) handle suspension of norms and finally (5) resolve references
by including referenced norms.

[Rz 28] For sake of brevity it is not possible to provide an in-depth discussion of this issue here.
A few more details can be found in Scharf [2014].

5 Modelling norms

[Rz 29] Following Kelsen [Kelsen 1979] we assume in accordance with legal theory that norms
have basically the following structure: If A1,. . . ,A2 then B; where «A1,. . . ,A2» are the conditions
of the norm, «B» is the legal effect and «if. . . then» is a normative conditional. The norms are
therefore formalized using rule objects9 consisting of antecedent and consequent. Technically
rules are represented by an interface called Rule.

5.1 Presenting rule priorities

[Rz 30] In law we have to deal with implicit (lex specialis, lex posterior) and explicit exceptions
between norms. A computable model of law must be able to represent both kinds of exceptions
to reflect the way statues are usually written, organized in general rules and exceptions.

[Rz 31] In AI and Law different methods to solve conflicts between rules have been proposed,
namely specificity, weight (salience) and preference relation. The model of rOWLer supports weights
and preference relations by using interfaces WeightedRule and PreferenceRelation respectively.

[Rz 32] Conflicts between rules are resolved by ordering rules using an implementation of Rule-
OrderingStrategy. The strategy inspects all rules to order the rules supporting all of the methods
above, using explicit and implicit information as well. The rules are placed in a network repre-
senting their ranking and wrapped by a dynamic proxy10 at runtime implementing Superiority-
Relation.

[Rz 33] A SuperiorityRelation represents an abstract concept describing the binary relationship
between two rules11, covering specificity, weight and preference relation as well. This abstraction
allows for a dynamic creation of arbitrary relations between rules, e.g. of lex superior and lex
inferior by inspecting the law making institutions modelled in the ontology and linked with the
rules.

[Rz 34] The model enhanced with superiority relations between rules builds the foundation for
qualifying the rules as defeater, defeasible and strict in the sense of defeasible logic [Nute 2003].
Further it enables the use of a defeasible engine like SPINdle [Lam & Governatori 2009] for
reasoning or the implementation of a custom engine built on an algorithm like [Maher 2004].

[Rz 35] Due to severe space limitations it is impossible to provide more details and to show how

9 We use an object-oriented model.
10 The architecture of rOWLer is consistently based on interfaces which allows for using Java’s dynamic proxying facili-

ties.
11 In this a sense superiority relation resembles a preference relation but in contrast to the latter it is an abstraction

whose instances are built dynamically at runtime by the engine.

7



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

different kinds of rules, metadata and isomorphism are handled by the formal model.

6 Related work

[Rz 36] JBoss Drools12 is an open-source business rule engine and as such uses production rules
as data structure. Since version 6 it is based on «PHREAK» a monotonic algorithm supporting
forward and backward chaining.

[Rz 37] Although drools performs well with thousands of rules and has a nice declarative style for
writing rules, it is not suited for the legal domain. First of all it only supports monotonic reaso-
ning and thus cannot deal with incomplete information. Defeasible reasoning can be «simulated»
to some extend by using attribute «salience» on rules, determining rule order and hence allows
for representing priority relations between rules. However, this approach only captures a few
aspects of defeasibility in law. Second the time model of Drools does not support the temporal
dimensions of law and thus would have to be extended to handle legal change over time. Compa-
red to Drools, rOWLer adheres to defeasible reasoning and its temporal model is well suited for
the legal domain.

[Rz 38] SPINdle [Lam & Governatori 2009] is another open-source rule engine which supports
defeasible logic and modal defeasible logic as well. Unlike Drools, which is based on a monotonic
algorithm, it is capable of defeasible reasoning over theories with thousands of rules. SPINdle
gives basic support for time and intervals but cannot handle the temporal dimensions of legal
norms. rOWLer is built on a sophisticated versioning model supporting temporal reasoning to
determine applicable provisions.

[Rz 39] The rules in SPINDle are heavy based on literals. Basically the conclusion of a rule is
a literal or its negation. To formalize norms we need a representation of a rule which allows
for representing richer conclusions, e.g. a calculation or the inclusion of other norms in case of
references. Therefore rOWLer supports a richer object model supporting different kind of rules
which are executed by using an appropriate strategy. However it would be nice if SPINdle could
be used as defeasible rule engine embedded inside rOWLer.

[Rz 40] Another system worth mentioning is Carneades [Gordon 2011a; Gordon 2011b] which
provides support for constructing, evaluating and visualizing arguments. Arguments can be con-
structed from ontologies, rules and cases. Carneades is based on a formal model of argumenta-
tion, designed for supporting real-world argumentation in practice. At the moment Carneades
lacks support for the temporal dimensions of law and deontic operators [Ceci 2013, 199 ff.]. The
purpose of rOWLer is limited to apply simple rules to cases, but builds on a sophisticated tem-
poral model that copes with legal change over time.

7 Conclusions and future work

[Rz 41] Compared to present approaches in public administration, rOWLer is aligned with legal
theory and fosters defeasible reasoning, while maintaining isomorphism with the sources of law.
To cope with legal change over time a solid temporal model has been developed with formalizes

12 By referring to «Drools» we actually mean «Drools Expert» which is the rule engine of the Drools platform.

8



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

the temporal dimensions of law and further is able to decide which norms should be applied to a
case at a certain point in time. By using a viewpoint the model is also capable of handling retroac-
tive modification by providing the historic and current version of a statute after the amendment.
Present implementations used in practice lack a sophisticated temporal model for handling legal
change which increases code complexity and leads to severe maintenance problems.

[Rz 42] At the moment rOWLer is designed as a single-agent system and the reasoning engine is
optimized to deal with statutes with a rather mathematical content like tax law or «easy» cases13

in the terminology of Hart. The model of rOWLer is flexible enough to be extended in the future
to handle «hard» cased as well, e.g. by providing the legal expert with different alternatives for
decision making and integrating more sophisticated argumentation systems like Carneades.

[Rz 43] In the future the conceptual model needs to be refined, especially with regard to the re-
presentation of norms and defeasible reasoning. Feasibility of the theoretical approach should be
evaluated by developing a prototype in Java, which has become the «mainstream» programming
language nowadays.

[Rz 44] Acknowledgements. I would like to thank my supervisor Erich Schweighofer of the Fa-
culty of Law, University of Vienna, Centre for Computers and Law, for help and guidance through
this challenging research.

8 References

Athan, T. et al., 2013. OASIS LegalRuleML. In Proceedings of the Fourteenth International Confe-
rence on Artificial Intelligence and Law — ICAIL «13. New York, USA: ACM Press, pp. 3—12.

Boer, A. & van Engers, T.M., 2011. A MetaLex and Metadata Primer: Concepts, Use, and Im-
plementation. In G. Sartor et al., eds. Legislative XML for the Semantic Web. Law, Governance and
Technology Series. Dordrecht: Springer Netherlands, pp. 131—149.

Ceci, M., 2013. Interpreting Judgements using Knowledge Representation Methods and Compu-
tational Models of Argument. University of Bologna.

Francesconi, E., 2011. Naming Legislative Resources. In G. Sartor et al., eds. Legislative XML for
the Semantic Web. Law, Governance and Technology Series. Dordrecht: Springer Netherlands, pp.
49—74.

Gordon, T.F., 2011a. Analyzing open source license compatibility issues with Carneades. In Pro-
ceedings of the 13th International Conference on Artificial Intelligence and Law — ICAIL «11. New
York, New York, USA: ACM Press, pp. 51—55.

Gordon, T.F., 2011b. Combining Rules and Ontologies with Carneades. In Proceedings of the 5th
International RuleML2011@ BRF Challenge. Fort Lauderdale, Florida, USA.

Hart, H.L.A., 1994. The Concept of Law 2. ed., Oxford: Clarendon Press.

Kelsen, H., 1979. Allgemeine Theorie der Normen, Wien: Manz.

Lam, H.-P. & Governatori, G., 2009. The Making of SPINdle. In G. Governatori, J. Hall, & A.
Paschke, eds. Rule Interchange and Applications. New York: Springer, pp. 315—322.

13 «Easy» cases can be largely decided «mechanically» by deducing the required result from the rule and the facts.
«Hard» cases are ones for Hart in which the facts fall within the «penumbra» of the meaning of the words in the
applicable rule. These cases require the judge to exercise discretion [Hart 1994].

9



Johannes Scharf, rOWLer – A Hybrid Rule Engine for Legal Reasoning, in: Jusletter IT 26. Februar 2015 – IRIS

Maher, M.J., 2004. Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming, 1(06), pp. 691—711.

Nute, D., 2003. Defeasible Logic. In O. Bartenstein et al., eds. Web Knowledge Management and
Decision Support. Berlin: Springer Berlin Heidelberg, pp. 151—169.

Palmirani, M., 2011. Legislative Change Management with Akoma-Ntoso. In G. Sartor et al.,
eds. Legislative XML for the Semantic Web. Law, Governance and Technology Series. Dordrecht:
Springer Netherlands, pp. 101—130.

Palmirani, M. & Brighi, R., 2006. Time Model for Managing the Dynamic of Normative System.
In M. A. Wimmer et al., eds. Electronic Government. Lecture Notes in Computer Science. Berlin
Heidelberg: Springer Berlin Heidelberg, pp. 207—218.

Palmirani, M., Governatori, G. & Contissa, G., 2011. Modelling temporal legal rules. In Procee-
dings of the 13th International Conference on Artificial Intelligence and Law — ICAIL «11. New York,
New York, USA: ACM Press, pp. 131—135.

Palmirani, M., Governatori, G. & Contissa, G., 2010. Temporal Dimensions in Rules Modelling.
In R. G. F. Winkels, ed. Legal Knowledge and Information Systems, JURIX 2010: The Twenty-Third
Annual Conference. Amsterdam: IOS Press, pp. 159—162.

Palmirani, M. & Vitali, F., 2011. Akoma-Ntoso for Legal Documents. In G. Sartor et al., eds. Le-
gislative XML for the Semantic Web. Law, Governance and Technology Series. Dordrecht: Springer
Netherlands, pp. 75—100.

Saur, K.G., 2009. Functional Requirements for Bibliographic Records: Final report., München: IFLA
Study Group on the Functional Requirements for Bibliographic Records.

Scharf, J., 2014. rOWLer — A Hybrid Rule Engine for Legal Reasoning. In Proceedings of the
Semantic Web for the Law and Second Jurix Doctoral Consortium Workshops. Kraków.

Walter, R., Mayer, H. & Kucsko-Stadlmayer, G., 2007. Grundriss des österreichischen Bundesver-
fassungsrechts 10. ed., Wien: Manzsche Verlags- und Universitätsbuchhandlung.

Johannes Scharf, PhD researcher, University of Vienna, Faculty of Law, Wiener Straße 73/1/6,
3002 Purkersdorf, AT, johannes.scharf@gmx.at

10

mailto:johannes.scharf@gmx.at

	Introduction
	Motivation

	Architecture
	Reasoning module and algorithm
	Temporal model and reasoning
	Theoretical background
	Versioning model
	Temporal dimensions
	Versioning legal rules
	Retroactive modifications

	Selecting applicable rules

	Modelling norms
	Presenting rule priorities

	Related work
	Conclusions and future work
	References

