
265

NAI: TOWARDS TRANSPARENT AND USABLE 
SEMI-AUTOMATED LEGAL ANALYSIS 

Tomer Libal / Alexander Steen

Assistant Professor, American University of Paris, Dep. of Computer Science, Mathematics and Environmental Science
102, rue St Dominique, 75007 Paris, FR
tlibal@aup.edu; http://tomer.libal.info/

Postdoctoral Researcher, Universität Luxemburg, Fakultät für Naturwissenschaften, Technologie und Kommunikation
6, avenue de la Fonte, L-4364 Esch-sur-Alzette, LU
alexander.steen@uni.lu; https://alexandersteen.de

Keywords: Legal Reasoning, Automated Theorem Proving, Graphical User Interface
Abstract: A prototype for automated reasoning over legal documents, called NAI, is presented. It uses 

formalized representations of legal documents that are created using a graphical editor that is 
also provided as part of NAI. The prototype supports several automated reasoning procedures 
over the given formalizations, including the execution of user queries. The application of NAI 
is studied using a fragment of the Scottish Smoking Prohibition (Children in Motor Vehicles) 
Act 2016.

1. Introduction
Computer-assisted legal reasoning technologies are becoming increasingly relevant in practice. New court 
cases and legislations are accumulated every day and navigating through the vast amount of complex informa-
tion is far from trivial. In contrast to this situation, the employment of automated legal reasoning tools is still 
underrepresented in practice [  B   . 2003] albeit being a relevant and active fi eld of research since 
the 1980s [S  1980, S   . 1986, B   . 1987]. In recent years automatic procedures, 
e.g. for courtroom management1, legal language processing/management [B   . 2016], and norma-
tive compliance tools2 have been introduced. At the same time, approaches for automatic reasoning over sets 
of norms have been developed, such as in the courtroom [G   . 2019], for business complian-
ce [H /G  2018] and General Data Protection Regulation (GDPR) compliance [P /
G  2018].
One of the reasons for the relatively restricted number of practical applications of automated reasoning in the 
legal domain might be the lack of systems that are both usable, also by non-logicians, and simple to integrate 
in existing processes. Also, creating formal representations of legal documents is usually quite laborious, and 
there currently seems to be no platform for exchanging (or trading with) already formalized works. Further-
more, asserting correctness of logical representations of the legal documents is challenging. Among existing 
results, one can fi nd a methodology for building legal ontologies [M /P  2017] and more con-
cretely to our approach, one for validating formal representations of legal texts [B   . 2018]. 
Finally, legal reasoning systems have to deal with many diffi  cult aspects, such as exceptions, counterfactuals 
and cross-references [R  1989] and further logical challenges. There exist some engines that deal with 
(some of) these aspects [G /S  2013, L /P  2019], and recent work on higher-order 
automation suggests that there might be a holistic base logic for many of these aspects rooted in type theory 
[B  2019].

1 See http://softpert.com/legal/court-management/winjuris.
2 See https://cst.cnpd.lu/portal for GDPR compliance checking.



266

Tomer Libal / Alexander Steen

Figure 1: Software-as-a-service architecture of the NAI platform. The front-end software is designed 
as a browser application; the back-end side runs on remote servers. Data fl ow is indicated by arrows.

In this paper, we describe the prototypical normative reasoning framework NAI (for Normative AI), which 
tries to address these problems. NAI features an annotation-based editor which abstracts over the underlying 
logical language. It also contains an easily accessible functionality for quality assurance and a transparent 
analysis of the created formalized document. NAI also supports an approach for assessing the correctness of 
formalizations via execution of behavioural tests using so-called queries. Lastly, it provides an interface for 
the creation of such queries and for checking their validity.
NAI is a web application and is readily available at https://nai.uni.lu. NAI is also open-source, its source code 
is freely available at GitHub 3 under GPL-3.0 license.

2. The NAI Suite
The NAI suite integrates state-of-the-art reasoning technology into a usable graphical user interface (GUI) 
for the computer-assisted formalization of legal texts and the application of automated normative reasoning 
procedures on these artefacts. In particular, NAI includes
 – a legislation editor that graphically supports the transformation of legal documents into computer-asses-

sable formal knowledge bases,
 – assistance technology for quality assurance, e.g., using automated checks for diff erent logical properties,
 – off -the-shelf availability of reasoning systems that evaluate user-specifi ed queries with respect to a given 

knowledge base, and
 – a knowledge transfer platform for sharing and reusing already existing knowledge basis.

NAI is realized using a web-based Software-as-a-service architecture, cf. Fig. 1. It comprises a GUI that is 
implemented as a Javascript browser application, and a NodeJS application on the back-end side which con-
nects to reasoning systems, data storage services and relevant middleware. Using this architectural layout, no 
further software is required from the user perspective for using NAI and its reasoning procedures. All neces-
sary software is made available on the NAI back end and the computationally heavy tasks are executed on the 
remote servers only. The results of the diff erent reasoning procedures are sent back to the GUI and displayed 
to the user. The major components of NAI are described in more detail in the following.

2.1. The Annotation Editor
The annotation editor of NAI is one of its central components. Using the editor, users can create formalizati-
ons of legal documents that can subsequently be used for formal legal reasoning. The general functionality of 
the editor is described in the following. A more detailed case study highlighting the usage of the annotation 
editor on a concrete legal document is presented in Sect. 3.



267

NAI: Towards Transparent and Usable Semi-Automated Legal Analysis 

One of the main motivations of the NAI editor is to hide the underlying logical details and technical reasoning 
input and outputs from the user. We consider this essential, as the primary target audience of the NAI suite 
are not necessarily logicians, but rather legal professionals. Therefore, it would signifi cantly decrease the 
usability of a tool if a solid background knowledge about formal logic and programming was required. This 
is currently realized by allowing the user to graphically annotate legal documents and queries, and by making 
the diff erent reasoning functionalities accessible via simple graphical means in the GUI (e.g., by buttons). 
Note that, if desired, a user can still inspect the automatically generated logical formulae that result from the 
annotation process, and also input these formulae directly. However, this feature is considered advanced and 
not the primary usage put forward by NAI.
The formalization of legal documents proceeds as follows: The user selects some text fragment from the legal 
document and annotates it, either as a so-called term or as a composite statement. In the fi rst case, a name for 
that term is computed automatically, but it can also be chosen freely. Diff erent terms are displayed as diff erent 
colors in the text. In the latter case, the user needs to choose among the diff erent possibilities (which roughly 
correspond to logical connectives) and the containing text can be annotated recursively. An example of an 
annotation result is displayed in Fig. 2.
The editor also features, via buttons, direct access to the quality control features, including consistency che-
cking and assessing logical independence (cf. Sect. 2.2 below for details on these concepts). When one of 
these procedures is invoked, the current state of the formalization will be translated into a machine-readable 
translation and sent to the back-end reasoning systems, which determine whether the current draft is logically 
consistent respectively logically independent.

Figure 2: Annotation example in the graphical editor of NAI. Diff erent colours represent diff erent 
notions, grey boxes with dashed borders indicate composite statements.

User queries are created using a similar annotation editor. In addition to the steps sketched above, users 
may declare a text passage as so-called goal using a dedicated annotation button, whose contents are again 
annotated as usual. If the query is executed, the back-end reasoning systems will try to validate that the 
goal is an immediate (logical) consequence which necessarily follows from the underlying formalized 
legal document (the knowledge base) and the contextual assumptions of the query at hand (the concrete 
case).



268

Tomer Libal / Alexander Steen

The editor was successfully used to formalize legal texts such as articles of the GDPR and other legislation. 
It was already used by lawyers and required but a little logical knowledge. Such a knowledge is many times 
possessed by legal practitioners such as lawyers, jurists. Nevertheless, we are constantly working on impro-
ving the interface in order to make it even more accessible.

2.2. The Reasoning Technology
The NAI suite supports formalizing legal documents into knowledge bases, as depicted above, using its le-
gislation editor. The second core component of NAI is its reasoning infrastructure that is used for applying 
diff erent automated logical operations on these knowledge bases. These operations can be separated into two 
main categories, that is, quality assurance and query answering.
Quality assurance procedures assist the user in the process of validating that the formalization of the legal 
document (i.e. the annotations created using the editor) do not contain – roughly speaking – logical fallacies. 
To this end, NAI off ers so-called consistency checking of knowledge bases and queries and checks for logical 
independence. The fi rst check fi nds logically contradictory information in the formalizations that arise from, 
possibly mistakenly, poorly chosen annotations. Inconsistency of a knowledge base can always be considered 
as an error and needs to be addressed. The second check fi nds redundancies in the formalization that also 
indicate possible formalization errors. Using the quality assurance procedures, the user can spot both kinds of 
errors and amend the formalization appropriately.
Query answering can be regarded as the core reasoning capability of NAI. Given an already formalized legal 
document, NAI supports creating and executing so-called queries on that formalization. A query is essentially 
a question of the form «[given the information of the underlying legal document L,] is it the case that X in 
a situation where Y holds?». Here, X is referred to as the goal of the query and Y represents the situational 
context (also called assumptions). These questions can be translated into a logical representation and amount 
to formally proving that X is a logical consequence of both L and Y using automated reasoning technology. 
These systems will then either prove that X is a necessary consequence or, in the negative case, provide ad-
ditional information as to why this is not the case.
After formalization, the formal representation of the legal documents is stored in NAI in an intermediate ex-
pressive machine-readable format. There exist many diff erent logical formalisms that have been discussed in 
the literature for capturing normative reasoning and extensions of it. Since the discussion of such formalisms 
is still ongoing, and the choice of the concrete logic underlying the reasoning process strongly infl uences the 
results of all procedures, NAI uses a two-step procedure to employ automated reasoning tools. NAI stores 
only the intermediate format as result of the formalization process. Once a certain logical formalism for 
conducting the logical analysis is chosen, NAI will automatically translate the intermediate format into this 
specifi c formalism. Currently, NAI supports a deontic logic based on a bi-modal logical formalism [L /
P  2019]; however, the architecture of NAI is designed in such a way that further formalisms can easily 
be supported. The automated theorem prover MleanCoP [O  2014] for fi rst-order multi-modal logics is 
employed at the back end of NAI.
There are many challenges for the formalization of legal texts. On the one hand, they should support contra-
ry-to-duty (CTD) obligations, temporal statements and defeasible norms. On the other, there needs to be an 
effi  cient automated processing by the computer. The current logic supports CTD obligations by default but 
does not provide any special support for the other requirements. This means that one needs to use the tools 
already existing in fi rst-order logic, such as adding comparison relations for temporal reasoning and using 
classical negation (monotonic) for exception handling. This approach can be used in a satisfactory way in 
practice but will be clearly found inadequate by some readers. As is written above, the tool is modular and 
other underlying logics can be used. For example, one can use Prolog and its non-monotonic features to deal 
with defeasible norms.



269

NAI: Towards Transparent and Usable Semi-Automated Legal Analysis 

2.3. Cloud-Based External Services
All the reasoning features of NAI can also be accessed by third-party applications. To this end, the NAI suite 
exposes a web-interface which allows (external) applications to run consistency checks, checks for indepen-
dence as well as user queries and use the result for further processing. The supply of this interface is in par-
ticular interesting for external legal applications that want to make use of the already formalized knowledge 
bases hosted by NAI and operations thereon. A simple example of such an application is a tax counselling web 
site which advises its visitors using legal reasoning implemented in the NAI suite.

3. Case Study: Scottish Smoking Regulation
The usage of the NAI suite is demonstrated in the following using a case study of an existing legal document, 
called the «Smoking Prohibition (Children in Motor Vehicles) (Scotland) Act 2016».3 This piece of legislation 
contains 19 articles regulating the act of smoking in vehicles when children are present. In this paper, only 
the formalization of the fi rst article is discussed more thoroughly. A more comprehensive formalization is 
available online through the NAI system.4

The fi rst article reads as follows:
Article 1: Off ence of smoking in a motor vehicle with children
1. It is an off ence for an adult to smoke in a private motor vehicle when: (a) there is a child in the vehicle, and 
(b) the vehicle is in a public place.
2. Subsection (1) does not apply to a private motor vehicle that is designed or adapted for use as living accom-
modation and which, at the time the smoking occurs, is parked and is being used as living accommodation.
3. A person who commits an off ence under subsection (1) is liable on summary conviction to a fi ne not excee-
ding level 3 on the standard scale.
In order to apply automated reasoning procedures to this text, fi rst the user’s understanding of the document’s mea-
ning needs to be formalized. In other words, a legal interpretation of the text needs to be formalized in the system.
While in general diff erent legal interpretations are possible for a given legal text, the interpretation of the 
example document at hand is comparably straight-forward. For the purpose of this example, the article is 
interpreted as a prohibition for adults to smoke in a private motor vehicle in case: (1) there is a child in the 
vehicle, (2) the vehicle is in a public space and (3) the vehicle is not adapted or designed to be used, and at 
the same time is being used, as living accommodation. When violating this prohibition, the adult is liable to 
a fi ne via a summary conviction.

3.1. Formalizing the Article
The formalization process essentially comprises of a computer-assisted translation of an informal natural lan-
guage text into a formal logical formula (or code). The steps for formalizing a document in NAI are:
 – Copying the legislation.
 – Identifi cation of all legal terms.
 – Capturing the meaning of the sentences via annotations.

This section describes the usage of the online tool. We therefore recommend that the reader be logged in to 
the demo account. Once logged in to NAI, the user can choose to create a new or edit an existing formalized 
legislation. Using the demo account specifi ed above, the one existing legislation can be selected and opened. 
In the account, three articles of the legislation have been copied, including article 1 which is discussed here.

3 See https://www.legislation.gov.uk/asp/2016/3/contents.
4 Please visit http://nai.uni.lu and log in with the credentials: smoking@nai.lu / nai.



270

Tomer Libal / Alexander Steen

The second step requires marking all legal terms in the text. In NAI, one can use for this purpose a rich, 
fi rst-order language which contains propositions, arguments and variables and which can capture terms and 
their relationships. The user highlights a specifi c text fragment, clicks the «Term» button from the editor’s op-
tions and chooses a logical term name to represent the text. For example, the word «adult» is annotated in the 
example using the term «condition_article1_adult», while the text «used as living accommodation» is annota-
ted using the term «exception_article1_used_homecar». The list of annotations and their corresponding texts 
can be found when visiting the «Vocabulary» tab. If the user would like to place a relation between terms, 
i.e. to denote that the adult is driving a car, one can annotate the adult using the fi rst-order term «adult(X)», 
whose meaning is that for every variable X, X is an adult. Similarly, one annotates the car with «car(Y)» and 
creates a relation between them using «drive(X,Y)». For the purpose of having a simple and clear example in 
the remaining of this section, we have focused on using propositional terms only.
While the user is free to choose any term to annotate the text, we recommend to use meaningful ones. The text 
«adult» is best annotated using a term containing the word «adult», while the fact that it is a condition can be 
captured in the name as well. The annotated text is then displayed in colors where the same terms are always 
annotated using the same colors.
Once all relevant legal terms have been annotated, the user can proceed with formalizing the legal interpre-
tation. For this purpose, one needs to specify which part of a sentence is the condition, or an obligation, etc. 
In NAI, this is obtained by highlighting whole sentences which contain one or more annotations and then 
choosing a connective from the dropdown menu. The way of using each connective is displayed when hover-
ing over it. For example, the connective «If / Then» expects two elements and its meaning is that if the fi rst 
element turns out to hold, then it is expected that the second holds as well.
In the fi rst sentence, there is a need to annotate what is an off ence according to article 1. Logically, this can 
be obtained by saying that the term «off ence» is equivalent to its defi nition. This defi nition contains the con-
ditions in subsection 1 as well as the exceptions in subsection 2. We have, therefore, highlighted the whole 
two sentences of subsections 1 and 2 and chose the connective «Equivalence». This connective expects two 
arguments – the annotation of «off ence» and of its defi nition. We use the «And» connective ,which can be 
used with any number of annotations, to annotate all the conditions.
The formalization of the text now reads as follows. The term «off ence» is equivalent to the existence of all the 
remaining terms in the two sentences together. This is clearly not a correct interpretation. The two last terms are 
not conditions to the existence of an off ence but are exceptions of it. We have captured that by highlighting these 
two terms and annotating them with the «Not» Connective. Meaning that an «off ence» does not hold if these two 
terms are both holding. To capture the fact that both terms need to hold, as well as to adhere to the requirement 
of the «Not» connective to apply to a single term or sentence, we have further annotated the two with the «And» 
connective. We have thus fi nished formalizing subsections 1 and 2 of article 1. By clicking «Save» and visiting the 
«Formalization» tab, the user can see the logical formula [L /P  2019] which was generated according to 
the annotation. This formula will be later given to a theorem prover in order to allow automated reasoning.
The last subsection of article 1 explains the result of committing an off ence according to subsection 1. There 
are diff erent ways in which it can be interpreted. We have chosen to understand it as a strong permission for 
the state to penalize the off ending person. The state is allowed to give a fi ne if and only if, an off ence was 
committed. This can be obtained by highlighting the two legal terms and by choosing the «If / Then Strong 
Permission» connective. The diff erence between the «If / Then» family of connectives to the «Always / If» 
one is the purpose of each term. While in the fi rst, we consider the fi rst element as the condition and the second 
as the conclusion, these roles are reversed in then «Always / If» family of connectives.
During the formalization process, the user is encouraged to repeatedly use the correctness features which 
were discussed in Section 2.2. Both the consistency and the independency checks are instrumental for the 
generation of a correct formalization.



271

NAI: Towards Transparent and Usable Semi-Automated Legal Analysis 

3.2. Resolving Legal Questions using the Query Editor
Once the user is confi dent that the formalization is faithful to the interpretation, she can trust it to resolve legal 
questions with regard to specifi c cases. In order to do that, she needs to switch the legislation editor with the 
query one. The demo account contains several such queries. In order to create a query, the user needs fi rst to 
write the query text and then annotate it in a similar way to the way the legal text was annotated. As discussed 
in Section 2.1, there is one important diff erence. In queries, one also needs to denote which part of the query 
should be affi  rmed. This is done by highlighting this text and annotating it as the goal.
Consider the following legal question.

Case 1. A client got a fi ne while driving his home car while smoking. His teen daughter was sitting next to 
him. Is there a case to appeal this decision?
Here a user might want to check if there was an obligation in the law not to give the client a fi ne. In case it is 
true, an appeal should be successful. This can be achieved by fi rst annotating all legal terms. In this example, 
we have annotated «off ence» as the goal. The case annotation is still incorrect. The question which it tries to 
answer is not if the state has given a fi ne, but if the state was allowed to give one. We have therefore further 
used the «Permission» connective in order to capture that.
By clicking «Execute query», one gets that a conclusion cannot be drawn (the query is counter-satisfi able). 
The reason for that is because some of the conditions and exceptions are not used. Since there might be two 
diff erent values for these conditions, the reasoning engine cannot determine which of the diff erent conclusi-
ons holds. In this case, one can fi nd the «Vocabulary» tab to be useful. After examining the vocabulary, the 
following information is obtained. There is a further condition – the car should be in public space – and one 
further exception – the car should also be used as a home car, and not only be designed as one. The client is 
required to share more information about the case.

Case 2. The client adds further that he was indeed driving in public space. The home car though, was not used 
as a home car at the time. The client has removed the home facilities and is using the car for transportation 
of goods.
The addition of the new annotations allows the execution of the query to terminate with a success. The poli-
ceman was indeed permitted to give the fi ne. The client could enjoy the exception of subsection (b), but he 
failed to use the car for accommodation. It seems better not to appeal the fi ne.

4. Summary and Discussion
In this paper, the NAI suite for legal reasoning is introduced. NAI can be used to formalize normative docu-
ments which can then be assessed using automated reasoning technology. The application of the annotation 
editor is depicted using a brief case study, where also the query answering functionalities are motivated.
The annotation editor constitutes the cornerstone of the NAI reasoning capabilities. While the process of 
hand-crafted annotating legal documents is currently time consuming and somewhat tedious, there are several 
benefi ts of this approach that should be highlighted: After the annotation is completed, there is an inherent 
one-to-one correspondence between the formalized code and the original natural language expressions. This 
correspondence can be utilized in several ways: First, the correspondence acts as implicit documentation of 
the given interpretation; this increases the transparency of formalized legal documents and allows for critical 
assessments of the formalized code. Secondly, the annotation procedure generates an explicit symbolic re-
presentation of an expert’s interpretation of the legal document. This allows for well-grounded deductive rea-
soning procedures over such knowledge bases and improved explainability, reproducibility and transparency 
– which seems more challenging in inductive resp. predictive approaches used in machine learning (ML) 
based set-ups. Finally, the stored data link between the natural language text and the annotations enable the 



272

Tomer Libal / Alexander Steen

employment of ML techniques for improving the user experience. As an example, learning-based techniques 
can be integrated for automatically suggesting annotation skeletons of complex documents.
The NAI platform as presented in this paper is a prototype. Further work is required on both the tools and 
their underlying logical formalisms, in order to make the formalization of legal texts easier and more intuitive. 
Currently, the NAI suite supports an expressive deontic fi rst-order language that can capture many scenarios 
which appear in legal texts; still important semantical aspects, e.g., the support of exceptions, temporal sen-
tences, counter-factuals and arithmetic [R  1989], are ongoing work. Similarly, the currently supported 
deduction engine can already be used for many interesting tasks. For example, deduction can be used for 
compliance checking [P /G  2018]. On the practical usability side, there is ongoing work 
to include natural language processing (NLP) techniques to the NAI front end that is planned to assist the 
annotation procedure. This way, annotations could be generated semi-automatically using suggestions, which 
can then be further refi ned or modifi ed by the user. This allows for a hybrid approach in which the transparen-
cy of the symbolic annotation process is kept, while the time effi  ciency of the process in improved at the same 
time. Also, the generation of explanations for invalid queries is planned.

5. Literature
A , G  and B , J  and M , M -L , Principles for a judgement editor based on binary 
decision diagrams. IfCoLog Journal of Logics and their Applications, 6(5):781–815, 2019.
B , C  and L , G  and S , C , An interdisciplinary methodology to validate formal 
representations of legal text applied to the GDPR. In JURISIN, 2018.
B , C , Universal (Meta-)Logical Reasoning: Recent Successes, In Science of Computer Programming, 
volume 172, pp. 48–62, 2019.
B , G  and D  C , L  and H , L  and R , L  and R , P  and   T , 
L , Eunomos, a legal document and knowledge management system for the web to provide relevant, reliable and up-to-
date information on the law, Artifi cial Intelligence and Law, 24(3):245–283, 2016.

 B , H   ., The use of legal knowledge-based systems in public administration: what can go wrong?. In Eva-
luation of Legal Reasoning and Problem-Solving Systems, pp. 14–16. 2003.
G , G  and S , S , Regorous: a business process compliance checker. In Proc. of the 14th Int. Conf. 
on Artifi cial Intelligence and Law, pp. 245–246. ACM, 2013.
H , M  and G , G , Norms modeling constructs of business process compliance management 
frameworks: a conceptual evaluation. Artif. Intell. Law, 26(3):251–305, 2018.
L , T  and P , M , Automated reasoning in normative detachment structures with ideal conditions. In 
Proc. of ICAIL, Montreal, pp. 63–72, 2019.
M , M  and P , M , Legal ontology for open government data mashups, In 2017 Conference for 
E-Democracy and Open Government (CeDEM), pp. 113–124. IEEE, 2017.
O . J , MleanCoP: A connection prover for fi rst-order modal logic. In IJCAR 2017, pp. 269–276, 2014.
P , M  and G , G , Modelling legal knowledge for GDPR compliance checking. In Legal 
Knowledge and Information Systems: JURIX, volume 313, pp. 101–110. IOS Press, 2018.
R , T , Hierarchically organised formalisations. In Proceedings of the 2nd international conference on Artifi cial 
intelligence and law, pp. 242–250. ACM, 1989.
S , R , LEGOL: Modelling legal rules by computer, Computer Science and Law (1980): 45–71.
S , M. J. and S , F. and K , R. A. and K , F. and H , P. and C , H. T., The British Na-
tionality Act as a logic program, Communications of the ACM 29, no. 5 (1986): 370–386.


