
 

 

Daniel Ronzani

Linking Exceptions under OSS Licenses

Category of articles: TechLawNews by Ronzani Schlauri Attorneys
Field of law: IP-Law

Citation: Daniel Ronzani, Linking Exceptions under OSS Licenses, in: Jusletter IT 30 March
2023

ISSN 1664-848X, jusletter-it.weblaw.ch, Weblaw AG, info@weblaw.ch, T +41 31 380 57 77
 

 

https://jusletter-it.weblaw.ch


Daniel Ronzani, Linking Exceptions under OSS Licenses, in: Jusletter IT 30 March 2023

[1] In order not to reinvent the wheel each time software code is written, developers often link
their (base) code to other software components. This process is called linking. A code link editor
combines one or more object files into a single executable file, library file1, or another «object»
file.2 There are two basic types of linking: static and dynamic.

[2] Static linking is the result of the code link editor making a (dedicated) copy of all used library
functions to the executable (binary) file. The code is extracted from the linked component at the
time the executable is built, i.e. at «compile time». Examples of libraries which are statically linked
are «.a» files in Linux and «.lib» files in Windows. A practical use case could be integrating a tool
library directly into an application.3

[3] Dynamic linking is the result of the dynamic code editor loading and linking the shared li-
braries needed by a binary file only when it is executed, i.e. at «run time».4 This can be achieved
by linking only the name of the linked component (e.g. library) to the binary file. Examples of
libraries which are dynamically linked are «.so» files in Linux and «.dll» files in Windows.5 A
practical use case could be linking to a maths library if the base code needs to resolve a mathe-
matical equation.6

[4] The benefit of dynamic linking deferring the linking process until a program starts running is,
among others, that the code does not need to be copied and it is thus also easier to update should
the linked component (e.g. library) change; whereas the benefit of static linking can be stability
(everything need is «in one file» and it does not change). A disadvantage of dynamic linking,
however, might be higher costs due to repeated linking at each runtime; whereas a disadvantage
of static linking is that each updated library needs to be repackaged and redeployed.7

[5] Creating a derivative work based on software licensed under open source (OSS) will, depend-
ing on the OSS license applied, trigger a copyleft effect (also) for the newly created code. Does this
mean that linking OSS components (e.g., libraries) to non-OSS (or OSS with weak copyleft effect)
qualifies as a derivative work? If so, it would mean that the downstream user of the compiled,
binary software linking to the OSS component would be entitled to receive the source code of the
(compiled) binary code under the OSS license of the linked OSS component(s).8

[6] A solution to this problem is the linking exception foreseen by certain OSS licenses, by which
parts of the software only linking (whether statically or dynamically) to the open source com-
ponent (e.g. library) are not considered a derivative work and thus do not need to be disclosed.
Three selected examples are:

a. Generally, under the Mozilla Public License 2.0 (MPL-2.0)9 derivative works must be made
available to anyone to whom the source code is distributed. However, new files contain-
ing no MPL-licensed code are not considered derivative works, and therefore do not need

1 IBM, Libraries (30.1.2023), tinyurl.com/mrrz5wv3.
2 Wikipedia, Linker (computing), tinyurl.com/3rup4wey.
3

Abhijit Saha, GeeksforGeeks, Static and Dynamic Libraries (Set 1), 14.10.2019, tinyurl.com/2hr78snd.
4 Wikipedia, Dynamic linker, tinyurl.com/3e3wmjf4.
5

Abhijit Saha, GeeksforGeeks, Static and Dynamic Libraries | Set 1, 14.10.2019, tinyurl.com/2hr78snd.
6

Lithmee, PEDIAA, What is the Difference Between Linker Loader and Compiler, 1.11.2018, tinyurl.com/bdewdtfk.
7 IBM, Libraries (30.1.2023), tinyurl.com/mrrz5wv3.
8 See in this context also the article on «Derivative Works in OSS» by Daniel Ronzani, in Jusletter IT 30 March 2023.
9 Open Source Initiative, MPL-2.0, tinyurl.com/yv9a44aa.

2

http://tinyurl.com/mrrz5wv3
http://tinyurl.com/3rup4wey
http://tinyurl.com/2hr78snd
http://tinyurl.com/3e3wmjf4
http://tinyurl.com/2hr78snd
http://tinyurl.com/bdewdtfk
http://tinyurl.com/mrrz5wv3
http://tinyurl.com/yv9a44aa


Daniel Ronzani, Linking Exceptions under OSS Licenses, in: Jusletter IT 30 March 2023

to be distributed under the terms of the MPL-2.0 license, even if using, compiling, or dis-
tributing the non-MPL files together with MPL-licensed files.10 The software code licensed
under MPL-2.0 can be kept in separate files (aka «file-based copyleft license»), allowing the
software code linking to theMPL-component (e.g., library) being released under different li-
cense terms despite being an aggregate work (derivative work).11 A similar concept applies
under the Common Development and Distribution License 1.0 (CDDL-1.0)12.

b. The GNU Lesser General Public License version 3 (LGPL-3.0)13 is also a weak copyleft OSS
license14. Under this license it is permissible to convey a derivative work without being
bound by section 3 of GNU GPL-3.0 (i.e., the section protecting the users’ legal rights from
DRM15), granting, generally, the right to incorporate material from header files of the linked
into the object code of the application. The object code may then be conveyed under terms
of choice, i.e. other than the OSS terms of the linked library.
Whereas, static linking is possible under LGPL-3.0, dynamic linking is considered best prac-
tice; the reason being that dynamic linking requires neither access to the library’s source
code nor other information or materials for the downstream user to be able to rebuild the
program.16

c. Finally, the GNU Classpath17, a free software implementation of the standard class library
for the Java programming language18, is a special exception under the GNU General Public
License version 3 (GPL-3.0)19. The copyright holders of a GPL-3.0 library may grant permis-
sion (i) to link such library with independent modules to produce an executable, regardless
of the license terms of these independent modules, and (ii) to copy and distribute the result-
ing executable under terms of choice, provided one also meets, for each linked independent
module, the terms and conditions of the license of that module.20

[7] The foregoing examples show that using OSS components in proprietary software code does
not necessarily contaminate the latter. The process of creating and conveying derivative works
with the possibility of dual licensing requires interplay between the objective of the code (techni-
cal components) and selection of suitable OSS licenses, and their linking exceptions, respectively.

10 moz://a, MPL 2.0 FAQ, Q11: How «viral» is the MPL? If I use MPL-licensed code in my proprietary application,
will I have to give all the source code away? tinyurl.com/3wyhxkfs.

11 FOSSA, Open Source Software Licenses 101: The LGPL License, 20.8.2021, tinyurl.com/2p8799tz.
12 Open Source Initiative, CDDL-1.0, tinyurl.com/bddmadtk.
13 Open Source Initiative, LGPL-3.0, tinyurl.com/msp35t8n.
14 FOSSA, Open Source Software Licenses 101: The LGPL License, 20.8.2021, tinyurl.com/2p8799tz.
15 Cf. art. 11 of the WIPO Copyright Treaty 1996, tinyurl.com/y7whwwrn.
16 FOSSA, Open Source Software Licenses 101: The LGPL License, 20.8.2021, tinyurl.com/2p8799tz.
17 GNU Classpath, 2.4.2018, tinyurl.com/4aduytft (own emphasis).
18 Wikipedia, GNU Classpath, tinyurl.com/4bktxtzy.
19 Open Source Initiative, GPL-3.0, tinyurl.com/ycksdafs.
20 GNU Classpath, 2.4.2018, tinyurl.com/4aduytft (own emphasis).

3

http://tinyurl.com/3wyhxkfs
http://tinyurl.com/2p8799tz
http://tinyurl.com/bddmadtk
http://tinyurl.com/msp35t8n
http://tinyurl.com/2p8799tz
http://tinyurl.com/y7whwwrn
http://tinyurl.com/2p8799tz
http://tinyurl.com/4aduytft
http://tinyurl.com/4bktxtzy
http://tinyurl.com/ycksdafs
http://tinyurl.com/4aduytft

